Delayed hematopoietic development in osteopetrotic (op/op) mice

نویسندگان

  • S K Begg
  • J M Radley
  • J W Pollard
  • O T Chisholm
  • E R Stanley
  • I Bertoncello
چکیده

Changes in structure, cellularity, hematopoietic progenitor cell and macrophage content, and osteoclast activity were investigated in the hematopoietic organs of the colony-stimulating factor 1(CSF-1)-less osteopetrotic (op/op) mouse. The data indicated that op/op mice undergo an age-related hematopoietic recovery and resolution of osteopetrosis, suggesting that the hematopoietic system has the capacity to use alternative mechanisms to compensate for the absence of an important multifunctional growth factor, CSF-1. In young animals, op/op femurs were heavily infiltrated with bone, and marrow cellularity was significantly reduced. After 6 wk of age, there was an increase in the marrow space available for hematopoiesis. The femoral cavity of op/op mice progressively enlarged, and by 22 wk of age its appearance and marrow cellularity was comparable to that of controls. The percentage of op/op mononuclear phagocytes, defined by F4/80 antigen expression, progressively increased to normal levels by 35 wk of age. There was no difference in the incidence of both primitive and mononuclear phagocyte-committed, CSF-1-responsive progenitor cells in op/op marrow, but their femoral content was significantly reduced in young mice. During the period of reduced hematopoiesis in the marrow of young op/op mice, splenic hematopoietic activity was elevated. This mutant mouse represents a system for the study of the CSF-1-independent regulatory mechanisms involved in hematopoietic regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed Hematopoietic Development in Osteopetrotic ( op / op ) Mice By Susan

Changes in structure, cellularity, hematopoietic progenitor cell and macrophage content, and osteoclast activity were investigated in the hematopoietic organs of the colony-stimulating factor l(CSF-1)-less osteopetrotic (op/op) mouse. The data indicated that op/op mice undergo an agerelated hematopoietic recovery and resolution of osteopetrosis, suggesting that the hematopoietic system has the ...

متن کامل

Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization

Hematopoietic stem cells (HSCs) are maintained in a specific bone marrow (BM) niche in cavities formed by osteoclasts. Osteoclast-deficient mice are osteopetrotic and exhibit closed BM cavities. Osteoclast activity is inversely correlated with hematopoietic activity; however, how osteoclasts and the BM cavity potentially regulate hematopoiesis is not well understood. To investigate this questio...

متن کامل

Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice.

Adult bone marrow is a major site for hematopoiesis, and reduction of the bone marrow cavity induces hematopoiesis in extramarrow tissues. To investigate the rudimentary intramarrow and the compensatory extramarrow hematopoiesis, particularly B lymphopoiesis, we used 3 osteopetrotic mouse strains [op/op, mi/mi, and Fos (-/-)], which are severely deficient in functional osteoclasts and therefore...

متن کامل

Granulocyte-macrophage colony-stimulating factor is not responsible for the correction of hematopoietic deficiencies in the maturing op/op mouse.

Osteopetrotic (op/op) mice are characterized by an autosomal recessive inactivating mutation resulting in the absence of biologically active colony-stimulating factor-1 (CSF-1). Consequently, young op/op mice have a severe deficiency of macrophages and osteoclasts resulting in excessive bone formation, occlusion of the marrow cavity, and reduced marrow hematopoietic activity. Recently, we showe...

متن کامل

Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice.

Previous studies of osteopetrotic (op) mice lacking macrophage colony-stimulating factor (M-CSF) have revealed an inhibition of atherosclerosis development in the apolipoprotein E (apo E)-deficient model and in a diet-induced model. Using LDL receptor-deficient mice, we now show that atheroma development depends on M-CSF concentration, as not only did homozygous osteopetrotic (op/op) mice have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 177  شماره 

صفحات  -

تاریخ انتشار 1993